528 research outputs found

    A Computational Model for Understanding Stem Cell, Trophectoderm and Endoderm Lineage Determination

    Get PDF
    Background: Recent studies have associated the transcription factors, Oct4, Sox2 and Nanog as parts of a self-regulating network which is responsible for maintaining embryonic stem cell properties: self renewal and pluripotency. In addition, mutual antagonism between two of these and other master regulators have been shown to regulate lineage determination. In particular, an excess of Cdx2 over Oct4 determines the trophectoderm lineage whereas an excess of Gata-6 over Nanog determines differentiation into the endoderm lineage. Also, under/over-expression studies of the master regulator Oct4 have revealed that some self-renewal/pluripotency as well as differentiation genes are expressed in a biphasic manner with respect to the concentration of Oct4. Methodology/Principal Findings: We construct a dynamical model of a minimalistic network, extracted from ChIP-on-chip and microarray data as well as literature studies. The model is based upon differential equations and makes two plausible assumptions; activation of Gata-6 by Oct4 and repression of Nanog by an Oct4–Gata-6 heterodimer. With these assumptions, the results of simulations successfully describe the biphasic behavior as well as lineage commitment. The model also predicts that reprogramming the network from a differentiated state, in particular the endoderm state, into a stem cell state, is best achieved by over-expressing Nanog, rather than by suppression of differentiation genes such as Gata-6. Conclusions: The computational model provides a mechanistic understanding of how different lineages arise from the dynamics of the underlying regulatory network. It provides a framework to explore strategies of reprogramming a cell from a differentiated state to a stem cell state through directed perturbations. Such an approach is highly relevant to regenerative medicine since it allows for a rapid search over the host of possibilities for reprogramming to a stem cell state

    Evidence for Non-Random Hydrophobicity Structures in Protein Chains

    Full text link
    The question of whether proteins originate from random sequences of amino acids is addressed. A statistical analysis is performed in terms of blocked and random walk values formed by binary hydrophobic assignments of the amino acids along the protein chains. Theoretical expectations of these variables from random distributions of hydrophobicities are compared with those obtained from functional proteins. The results, which are based upon proteins in the SWISS-PROT data base, convincingly show that the amino acid sequences in proteins differ from what is expected from random sequences in a statistical significant way. By performing Fourier transforms on the random walks one obtains additional evidence for non-randomness of the distributions. We have also analyzed results from a synthetic model containing only two amino-acid types, hydrophobic and hydrophilic. With reasonable criteria on good folding properties in terms of thermodynamical and kinetic behavior, sequences that fold well are isolated. Performing the same statistical analysis on the sequences that fold well indicates similar deviations from randomness as for the functional proteins. The deviations from randomness can be interpreted as originating from anticorrelations in terms of an Ising spin model for the hydrophobicities. Our results, which differ from previous investigations using other methods, might have impact on how permissive with respect to sequence specificity the protein folding process is -- only sequences with non-random hydrophobicity distributions fold well. Other distributions give rise to energy landscapes with poor folding properties and hence did not survive the evolution.Comment: 16 pages, 8 Postscript figures. Minor changes, references adde

    Quantum ergodicity on the Bruhat-Tits building for PGL(3,F)\text{PGL}(3, F) in the Benjamini-Schramm limit

    Full text link
    We study eigenfunctions of the spherical Hecke algebra acting on L2(Γn\G/K)L^2(\Gamma_n \backslash G / K) where G=PGL(3,F)G = \text{PGL}(3, F) with FF a non-archimedean local field of characteristic zero, K=PGL(3,O)K = \text{PGL}(3, \mathcal{O}) with O\mathcal{O} the ring of integers of FF, and (Γn)(\Gamma_n) is a sequence of cocompact torsionfree lattices. We prove a form of equidistribution on average for eigenfunctions whose spectral parameters lie in the tempered spectrum when the associated sequence of quotients of the Bruhat-Tits building Benjamini-Schramm converges to the building itself.Comment: 111 pages, 25 figures, 2 table

    Local Interactions and Protein Folding: A 3D Off-Lattice Approach

    Full text link
    The thermodynamic behavior of a three-dimensional off-lattice model for protein folding is probed. The model has only two types of residues, hydrophobic and hydrophilic. In absence of local interactions, native structure formation does not occur for the temperatures considered. By including sequence independent local interactions, which qualitatively reproduce local properties of functional proteins, the dominance of a native state for many sequences is observed. As in lattice model approaches, folding takes place by gradual compactification, followed by a sequence dependent folding transition. Our results differ from lattice approaches in that bimodal energy distributions are not observed and that high folding temperatures are accompanied by relatively low temperatures for the peak of the specific heat. Also, in contrast to earlier studies using lattice models, our results convincingly demonstrate that one does not need more than two types of residues to generate sequences with good thermodynamic folding properties in three dimensions.Comment: 18 pages, 11 Postscript figure

    Genetic networks with canalyzing Boolean rules are always stable

    Full text link
    We determine stability and attractor properties of random Boolean genetic network models with canalyzing rules for a variety of architectures. For all power law, exponential, and flat in-degree distributions, we find that the networks are dynamically stable. Furthermore, for architectures with few inputs per node, the dynamics of the networks is close to critical. In addition, the fraction of genes that are active decreases with the number of inputs per node. These results are based upon investigating ensembles of networks using analytical methods. Also, for different in-degree distributions, the numbers of fixed points and cycles are calculated, with results intuitively consistent with stability analysis; fewer inputs per node implies more cycles, and vice versa. There are hints that genetic networks acquire broader degree distributions with evolution, and hence our results indicate that for single cells, the dynamics should become more stable with evolution. However, such an effect is very likely compensated for by multicellular dynamics, because one expects less stability when interactions among cells are included. We verify this by simulations of a simple model for interactions among cells.Comment: Final version available through PNAS open access at http://www.pnas.org/cgi/content/abstract/0407783101v

    Airline Crew Scheduling with Potts Neurons

    Full text link
    A Potts feedback neural network approach for finding good solutions to resource allocation problems with a non-fixed topology is presented. As a target application the airline crew scheduling problem is chosen. The topological complication is handled by means of a propagator defined in terms of Potts neurons. The approach is tested on artificial random problems tuned to resemble real-world conditions. Very good results are obtained for a variety of problem sizes. The computer time demand for the approach only grows like \mbox{(number of flights)}^3. A realistic problem typically is solved within minutes, partly due to a prior reduction of the problem size, based on an analysis of the local arrival/departure structure at the single airportsComment: 9 pages LaTeX, 3 postscript figures, uufiles forma

    Scaling and Scale Breaking in Polyelectrolyte

    Full text link
    We consider the thermodynamics of a uniformly charged polyelectrolyte with harmonic bonds. For such a system there is at high temperatures an approximate scaling of global properties like the end-to-end distance and the interaction energy with the chain-length divided by the temperature. This scaling is broken at low temperatures by the ultraviolet divergence of the Coulomb potential. By introducing a renormalization of the strength of the nearest- neighbour interaction the scaling is restored, making possible an efficient blocking method for emulating very large polyelectrolytes using small systems. The high temperature behaviour is well reproduced by the analytical high-TT expansions even for fairly low temperatures and system sizes. In addition, results from low-TT expansions, where the coefficients have been computed numerically, are presented. These results approximate well the corresponding Monte Carlo results at realistic temperatures. A corresponding analysis of screened chains is performed. The situation here is complicated by the appearance of an additional parameter, the screening length. A window is found in parameter space, where scaling holds for the end-to-end distance. This window corresponds to situations where the range of the potential interpolates between the bond length and the size of the chain. This scaling behaviour, which is verified by Monte Carlo results, is consistent with Flory scaling. Also for the screened chain a blocking approach can be devised, that performs well for low temperatures, whereas the low-TT expansion is inaccurate at realistic temperatures.Comment: 18 pages, latex, 6 figure
    • …
    corecore